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Problem Statement: Distributed Optimization

f1(·)

f2(·)

f3(·)

f4(·)

F (x) , 1
n

n∑
i=1

fi(x) , 1
n1

T f(x) where f(x) ,
[
f1(x1) · · · fn(xn)

]T
Objective: to reach and consent on some x∗ ∈ X := arg min

x∈Rm
F (x)

Assumptions on F (x):

∀i fi(x) is a convex function
∀i, x ‖∇fi(x)‖ ≤ L

For the sake of discussion: let m = 1
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Objective

Finding a distributed recursive algorithm (dynamics) for agents’ estimate
xi(t) of an optimal point:

lim
t→∞

x(t) = x∗1 and x∗ ∈ arg min
x∈Rm

F (x)

Main and original idea: Gradient Descent + Ergodicity
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Stochastic Matrices

W ∈ Rn×n is a (row)-stochastic matrix if
1 W is non-negative,

and
2 each row sums up to one.

Example:

W =

 1
4

1
4

1
2

1
3

2
3 0

0 1
3

2
3

 .

W is doubly stochastic if W,WT are both stochastic.
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An Algorithm

Averaging-based distributed optimization solver:

xi(t+ 1) =

n∑
j=1

wij(t+ 1)xj(t)− α(t)∇fi(xi(t)),

or more compactly1:

x(t+ 1) = W (t+ 1)x(t)− α(t)∇f(x(t)),

where ∇f(x) = [∇f1(x1), . . . ,∇fn(xn)]T .

1A. Nedić and A. Ozdaglar. “ Distributed subgradient methods for multi-agent
optimization”, IEEE Transactions on Automatic Control, 2009.
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Template for Results

Averaging-Based Distributed Optimization Solver

x(t+ 1) = W (t+ 1)x(t)− α(t)∇f(x(t)).

Template for Results

If

step-sizes {α(t)} satisfies some step-size condition,

the local objective functions fi(x) satisfy the conditions, and

{W (t)} satisfies some connectivity conditions.

then limt→∞ xi(t) = x∗ ∈ X := arg min
x∈Rm

F (x).
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B-Connectivity

For a n× n matrix W , define Eγ(W ) by

Eγ(W ) := {(i, j) | wij ≥ γ}.

We say that {W (t)} is (strongly) B-connected if

Wii(t) ≥ β > 0 for all i ∈ [n] and t ≥ 0,

for every t ≥ 0, the graph ([n],
⋃(t+1)B−1
k=tB Eγ(W (k))) is strongly connected

for some γ > 0.
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Averaging-Based Distributed Optimization Results

Averaging-Based Distributed Optimization Solver

x(t+ 1) = W (t+ 1)x(t)− α(t)∇f(x(t)).

Template

If the step-size condition holds, the local objective function conditions hold,
and {W (t)} satisfies some connectivity conditions, then (for all i ∈ [n] and
initial conditions xi(0) ∈ Rm)

lim
t→∞

xi(t) = x∗ ∈ X.
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Averaging-Based Distributed Optimization Results

Averaging-Based Distributed Optimization Solver

x(t+ 1) = W (t+ 1)x(t)− α(t)∇f(x(t)).

Convergence in Deterministic Settings2

If the step-size condition holds, the local objective function conditions hold,
and {W (t)} is deterministic, doubly stochastic, and B-connected, then

lim
t→∞

xi(t) = x∗ ∈ X.

2A. Nedić, A. Ozdaglar, and P. Parrilo. “Constrained consensus and optimization in
multi-agent networks.” IEEE Transactions on Automatic Control 55.4 (2010): 922-938.
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Averaging-Based Distributed Optimization Results

Averaging-Based Distributed Optimization Solver

x(t+ 1) = W (t+ 1)x(t)− α(t)∇f(x(t)).

Since W (t) is row-stochastic:

1

n
1Tx(t+ 1) =

1

n
1T [W (t+ 1)x(t)− α(t)∇f(x(t))]

=
1

n
1Tx(t)− α(t)

1

n
1T∇f(x(t))

Well-mixing (ergodicity) and diminishing step-size implies: for t� 0,

x̄(t) ,
1

n
1Tx(t) ≈ x1(t) ≈ · · · ≈ xn(t)

1T∇f(x(t)) ≈ ∇F (x̄(t)) and x̄(t+ 1) ≈ x̄(t)− ᾱ(t)∇F (x̄(t))

B. Touri Dist. Avg. and Opt. over Random Nets 12 / 22



Averaging-Based Distributed Optimization Results

Averaging-Based Distributed Optimization Solver

x(t+ 1) = W (t+ 1)x(t)− α(t)∇f(x(t)).

Since W (t) is row-stochastic:

1

n
1Tx(t+ 1) =

1

n
1T [W (t+ 1)x(t)− α(t)∇f(x(t))]

=
1

n
1Tx(t)− α(t)

1

n
1T∇f(x(t))

Well-mixing (ergodicity) and diminishing step-size implies: for t� 0,

x̄(t) ,
1

n
1Tx(t) ≈ x1(t) ≈ · · · ≈ xn(t)

1T∇f(x(t)) ≈ ∇F (x̄(t)) and x̄(t+ 1) ≈ x̄(t)− ᾱ(t)∇F (x̄(t))
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Averaging-Based Distributed Optimization Results

Convergence in Deterministic Settings3

If the step-size condition holds, the local objective function conditions hold,
and {W (t)} is deterministic and satisfies the B-connectivity condition, then

lim
t→∞

xi(t) = x∗ ∈ X.

Challenges: Link failure? (wij(t)→ bij(t)wij(t) for a random binary
matrix B(t) and i 6= j)
Doubly stochastic?
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Previous Approaches: Random Connectivity 1

Convergence in Random Settings4

If the step-size condition holds, the local objective function conditions hold,
and {W (t)} is deterministic an independent random sequence that is doubly
stochastic almost surely, and {E[W (t)]} is B-connected, then

lim
t→∞

xi(t) = x∗ ∈ X.

Challenges: Link failure?
Doubly stochastic?

4I. Lobel and A. Ozdaglar. “Distributed subgradient methods for convex optimization
over random network,” IEEE Transactions on Automatic Control, 2010.
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Previous Approaches: Random Connectivity 2

Convergence in Random Settings5

If the step-size condition holds, the local objective function conditions hold,
and {W (t)} is deterministic independently and identically distributed random
sequence, doubly stochastic almost surely row-stochastic almost surely,
column-stochastic in-expectation, and B-connected in-expectation E[W (0)] is
strongly connected, then

lim
t→∞

xi(t) = x∗ ∈ X := arg min
x∈Rm

F (x).

Challenges: Link failure?
Doubly stochastic?

5K. Srivastava, A. Nedić. “Distributed asynchronous constrained stochastic
optimization.” IEEE Journal of Selected Topics in Signal Processing 5.4 (2011): 772-790.
G. Morral, P. Bianchi, and G. Fort. “Success and failure of adaptation-diffusion algorithms
with decaying step size in multiagent networks.” IEEE Transactions on Signal Processing
65.11 (2017): 2798-2813.I.
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Our Result

Convergence in Random Settings6

If the step-size condition holds, the local objective function conditions hold,
and {W (t)} is

1 a dependent random sequence,

2 row-stochastic and further E[W (t) | F(t− 1)] is column-stochastic almost
surely, and

3 B-connected in conditional expectation, i.e., the random graph
([n], E(tB)) with

E(tB) :=

(t+1)B⋃
τ=tB+1

Eγ(E[W (τ)|F(tB)])

is strongly connected almost surely for all t ≥ 0,

then limt→∞ xi(t) = x∗ almost surely for a random vector supported on X.

6A. Aghajan and B. Touri. “Distributed optimization over dependent random networks.”
available on Arxiv.
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Implication 1: Independent Setting

Convergence in Independent Settings7

If the step-size condition holds, the local objective function conditions hold,
and {W (t)} is an independent random sequence, row-stochastic almost surely
and E[W (t)] is doubly-stochastic, and {E[W (t)]} is B-connected, then
limt→∞ xi(t) = x∗ almost surely for a random vector supported on X.

This implies the previously discussed results.

Robustness of averaging-based solvers to link-failure.

7A. Aghajan and B. Touri. “Distributed optimization over independent random
networks.” somewhere on Overleaf.
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Implication 2: Synthesizing other distributed schemes

Let G be an undirected connected graph.

Consider a token at the possession of agent `(t) at time t ≥ 0.
`(t) asks or shares information (each w.p. 0.5) with a random neighbor
s(t).
If asking, `(t) keeps the token (`(t+ 1) = `(t)) and if sharing, `(t) passes
the token to s(t) (`(t+ 1) = s(t)).
The agent with the token sets

x`(t+1)(t+ 1) =
1

2
(xs(t)(t) + x`(t)(t))− α(t)∇f`(t+1)(x`(t+1)(t)).

The rest do simple gradient update xi(t+ 1) = xi(t)− α(t)∇fi(xi(t)).

1

2

3

4

W (t) =


1 0 0 0
0 1

2 0 1
2

0 0 1 0
0 0 0 1


W (t) is row-stochastic, and E[W (t) | F(t− 1)] is column-stochastic.
For B = d(G), we can show that E[W (t+B) | F(t)] ≥ γ11T for some
γ > 0.
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Our Result: Sketch of the Proof

Convergence in Random Settings

If the step-size condition holds, the local objective function conditions hold,
and {W (t)} is

1 a dependent random sequence,

2 row-stochastic almost surely and E[W (t) | F(t− 1)] is doubly-stochastic
almost surely, and

3 B-connected in conditional expectation, i.e., the random graph
([n], E(tB)) with

E(tB) :=

(t+1)B⋃
τ=tB+1

Eγ(E[W (τ)|F(tB)])

is strongly connected almost surely for all t ≥ 0.

Then limt→∞ xi(t) = x∗ almost surely for a random vector supported on X.
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Sketch of the Proof: Convergence of Controlled
Averaging Dynamics

Show that limt→∞ ‖x̄(t)− x∗‖ = 0 a.s. for a random x∗ ∈ X

Show that limt→∞ ‖xi(t)− x∗‖ = 0 a.s. for all i ∈ [n]through the study of

x(t+ 1) = W (t+ 1)x(t)− α(t)∇f(x(t))

x(t+ 1) = W (t+ 1)x(t) + u(t),

where ‖u(t)‖ ≤ α(t)L.

Requires showing limt→∞ d(x(t)) = 0 almost surely for the controlled
process.
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An Intermediate Result

Lemma

Suppose that {D(t)} is a non-negative random (scalar) process such that

D(t+ 1) ≤ a(t+ 1)D(t) + b(t), almost surely

where {b(t)} is a deterministic sequence and {a(t)} is an adapted process (to
{F(t)}), such that a(t) ∈ [0, 1] and

E[a(t+ 1) | F(t)] ≤ λ̃ < 1,

almost surely for all t ≥ 0. Then, if

0 ≤ b(t) ≤ Kt−β̃

for some K, β̃ > 0, we have limt→∞D(t)tβ = 0, almost surely, for all β < β̃.
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Future Directions

Extension to non-convex

Extension to the social-learning

Questions?
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