Distributed Averaging and Optimization over Random Networks

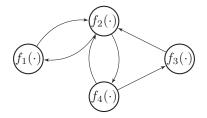
Behrouz Touri

Department of Electrical and Computer Engineering University of California, San Diego

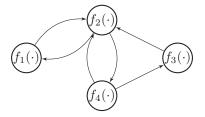
Joint work with: Adel Aghajan

Isfahan University of Technology December 21st 2020

Problem Statement: Distributed Optimization



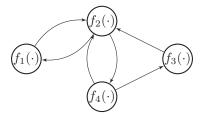
Problem Statement: Distributed Optimization



• $F(\mathbf{x}) \triangleq \frac{1}{n} \sum_{i=1}^{n} f_i(x) \triangleq \frac{1}{n} \mathbf{1}^T f(x)$ where $f(x) \triangleq [f_1(x_1) \cdots f_n(x_n)]^T$

Objective: to reach and consent on some $x^* \in X := \arg\min_{x \in \mathbb{R}^m} F(x)$

Problem Statement: Distributed Optimization



•
$$F(\mathbf{x}) \triangleq \frac{1}{n} \sum_{i=1}^{n} f_i(x) \triangleq \frac{1}{n} \mathbf{1}^T f(x)$$
 where $f(x) \triangleq \begin{bmatrix} f_1(x_1) & \cdots & f_n(x_n) \end{bmatrix}^T$

Objective: to reach and consent on some $x^* \in X := \arg \min_{x \in \mathbb{R}^m} F(x)$

- Assumptions on F(x):
 - $\forall i \ f_i(x)$ is a convex function
 - $\forall i, x \ \|\nabla f_i(x)\| \leq L$
- For the sake of discussion: let m = 1

• Finding a distributed recursive algorithm (dynamics) for agents' estimate $x_i(t)$ of an optimal point:

$$\lim_{t \to \infty} x(t) = x^* \mathbf{1} \text{ and } x^* \in \arg \min_{x \in \mathbb{R}^m} F(x)$$

• Finding a distributed recursive algorithm (dynamics) for agents' estimate $x_i(t)$ of an optimal point:

$$\lim_{t\to\infty} x(t) = x^* \mathbf{1} \text{ and } x^* \in \arg\min_{x\in\mathbb{R}^m} F(x)$$

• Main and original idea: Gradient Descent + Ergodicity

• W is non-negative,

- \bigcirc W is non-negative, and
- 2 each row sums up to one.

- \bigcirc W is non-negative, and
- 2 each row sums up to one.
- Example:

$$W = \begin{pmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{2} \\ \frac{1}{3} & \frac{2}{3} & 0 \\ 0 & \frac{1}{3} & \frac{2}{3} \end{pmatrix}.$$

- \bigcirc W is non-negative, and
- 2 each row sums up to one.
- Example:

$$W = \begin{pmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{2} \\ \frac{1}{3} & \frac{2}{3} & 0 \\ 0 & \frac{1}{3} & \frac{2}{3} \end{pmatrix}.$$

• W is doubly stochastic if W, W^T are both stochastic.

• Averaging-based distributed optimization solver:

$$x_i(t+1) = \sum_{j=1}^n w_{ij}(t+1)x_j(t) - \alpha(t)\nabla f_i(x_i(t)),$$

or more compactly¹:

 $\mathbf{x}(t+1) = W(t+1)\mathbf{x}(t) - \alpha(t)\nabla f(\mathbf{x}(t)),$ where $\nabla f(\mathbf{x}) = [\nabla f_1(x_1), \dots, \nabla f_n(x_n)]^T.$

¹A. Nedić and A. Ozdaglar. "Distributed subgradient methods for multi-agent optimization", IEEE Transactions on Automatic Control, 2009.

B. Touri

 $\mathbf{x}(t+1) = W(t+1)\mathbf{x}(t) - \alpha(t)\nabla f(\mathbf{x}(t)).$

$$\mathbf{x}(t+1) = W(t+1)\mathbf{x}(t) - \alpha(t)\nabla f(\mathbf{x}(t)).$$

Template for Results

If

- step-sizes $\{\alpha(t)\}$ satisfies some step-size condition,
- the local objective functions $f_i(x)$ satisfy the conditions, and
- $\{W(t)\}$ satisfies some connectivity conditions.

then $\lim_{t\to\infty} \mathbf{x}_i(t) = x^* \in X := \arg\min_{x\in\mathbb{R}^m} F(x).$

$$\mathbf{x}(t+1) = W(t+1)\mathbf{x}(t) - \alpha(t)\nabla f(\mathbf{x}(t)).$$

$$\mathbf{x}(t+1) = W(t+1)\mathbf{x}(t) - \alpha(t)\nabla f(\mathbf{x}(t)).$$

Template for Results

If

- step-sizes $\{\alpha(t)\}$ satisfies $\alpha(t) \in [0,1]$ is decreasing, $\sum_{t=0}^{\infty} \alpha(t) = \infty$, and $\sum_{t=0}^{\infty} \alpha^2(t) < \infty$,
- the local objective functions $f_i(x)$ are convex with uniformly bounded (sub-)gradient, and
- $\{W(t)\}$ satisfies some connectivity conditions.

then $\lim_{t\to\infty} \mathbf{x}_i(t) = x^* \in X := \arg\min_{x\in\mathbb{R}^m} F(x).$

• For a $n \times n$ matrix W, define $\mathcal{E}^{\gamma}(W)$ by

$$\mathcal{E}^{\gamma}(W) := \{ (i,j) \mid w_{ij} \ge \gamma \}.$$

• For a $n \times n$ matrix W, define $\mathcal{E}^{\gamma}(W)$ by

$$\mathcal{E}^{\gamma}(W) := \{ (i,j) \mid w_{ij} \ge \gamma \}.$$

- We say that $\{W(t)\}$ is (strongly) *B*-connected if
 - $W_{ii}(t) \ge \beta > 0$ for all $i \in [n]$ and $t \ge 0$,

• For a $n \times n$ matrix W, define $\mathcal{E}^{\gamma}(W)$ by

$$\mathcal{E}^{\gamma}(W) := \{ (i,j) \mid w_{ij} \ge \gamma \}.$$

- We say that $\{W(t)\}$ is (strongly) *B*-connected if
 - $W_{ii}(t) \ge \beta > 0$ for all $i \in [n]$ and $t \ge 0$,
 - for every $t \ge 0$, the graph $([n], \bigcup_{k=tB}^{(t+1)B-1} \mathcal{E}^{\gamma}(W(k)))$ is strongly connected for some $\gamma > 0$.

Averaging-Based Distributed Optimization Solver

 $\mathbf{x}(t+1) = W(t+1)\mathbf{x}(t) - \alpha(t)\nabla f(\mathbf{x}(t)).$

$$\mathbf{x}(t+1) = W(t+1)\mathbf{x}(t) - \alpha(t)\nabla f(\mathbf{x}(t)).$$

Template

If the step-size condition holds, the local objective function conditions hold, and $\{W(t)\}$ satisfies some connectivity conditions, then (for all $i \in [n]$ and initial conditions $x_i(0) \in \mathbb{R}^m$)

$$\lim_{t \to \infty} x_i(t) = x^* \in X.$$

$$\mathbf{x}(t+1) = W(t+1)\mathbf{x}(t) - \alpha(t)\nabla f(\mathbf{x}(t)).$$

Convergence in Deterministic Settings²

If the step-size condition holds, the local objective function conditions hold, and $\{W(t)\}$ is deterministic, doubly stochastic, and *B*-connected, then

$$\lim_{t \to \infty} x_i(t) = x^* \in X.$$

²A. Nedić, A. Ozdaglar, and P. Parrilo. "Constrained consensus and optimization in multi-agent networks." IEEE Transactions on Automatic Control 55.4 (2010): 922-938.

Averaging-Based Distributed Optimization Solver

$$\mathbf{x}(t+1) = W(t+1)\mathbf{x}(t) - \alpha(t)\nabla f(\mathbf{x}(t)).$$

• Since W(t) is row-stochastic:

$$\frac{1}{n} \mathbf{1}^T \mathbf{x}(t+1) = \frac{1}{n} \mathbf{1}^T \left[W(t+1) \mathbf{x}(t) - \alpha(t) \nabla f(\mathbf{x}(t)) \right]$$

Averaging-Based Distributed Optimization Solver

$$\mathbf{x}(t+1) = W(t+1)\mathbf{x}(t) - \alpha(t)\nabla f(\mathbf{x}(t)).$$

• Since W(t) is row-stochastic:

$$\frac{1}{n} \mathbf{1}^T \mathbf{x}(t+1) = \frac{1}{n} \mathbf{1}^T \left[W(t+1)\mathbf{x}(t) - \alpha(t)\nabla f(\mathbf{x}(t)) \right]$$
$$= \frac{1}{n} \mathbf{1}^T \mathbf{x}(t) - \alpha(t) \frac{1}{n} \mathbf{1}^T \nabla f(\mathbf{x}(t))$$

Averaging-Based Distributed Optimization Solver

$$\mathbf{x}(t+1) = W(t+1)\mathbf{x}(t) - \alpha(t)\nabla f(\mathbf{x}(t)).$$

• Since W(t) is row-stochastic:

$$\frac{1}{n} \mathbf{1}^T \mathbf{x}(t+1) = \frac{1}{n} \mathbf{1}^T \left[W(t+1)\mathbf{x}(t) - \alpha(t)\nabla f(\mathbf{x}(t)) \right]$$
$$= \frac{1}{n} \mathbf{1}^T \mathbf{x}(t) - \alpha(t) \frac{1}{n} \mathbf{1}^T \nabla f(\mathbf{x}(t))$$

• Well-mixing (*ergodicity*) and diminishing step-size implies: for $t \gg 0$,

$$\bar{\mathbf{x}}(t) \triangleq \frac{1}{n} \mathbf{1}^T \mathbf{x}(t) \approx x_1(t) \approx \cdots \approx x_n(t)$$

Averaging-Based Distributed Optimization Solver

$$\mathbf{x}(t+1) = W(t+1)\mathbf{x}(t) - \alpha(t)\nabla f(\mathbf{x}(t)).$$

• Since W(t) is row-stochastic:

$$\frac{1}{n} \mathbf{1}^T \mathbf{x}(t+1) = \frac{1}{n} \mathbf{1}^T \left[W(t+1)\mathbf{x}(t) - \alpha(t)\nabla f(\mathbf{x}(t)) \right]$$
$$= \frac{1}{n} \mathbf{1}^T \mathbf{x}(t) - \alpha(t) \frac{1}{n} \mathbf{1}^T \nabla f(\mathbf{x}(t))$$

• Well-mixing (*ergodicity*) and diminishing step-size implies: for $t \gg 0$,

$$\bar{\mathbf{x}}(t) \triangleq \frac{1}{n} \mathbf{1}^T \mathbf{x}(t) \approx x_1(t) \approx \cdots \approx x_n(t)$$

• $\mathbf{1}^T \nabla f(\mathbf{x}(t)) \approx \nabla F(\bar{\mathbf{x}}(t))$ and $\bar{\mathbf{x}}(t+1) \approx \bar{\mathbf{x}}(t) - \bar{\alpha}(t) \nabla F(\bar{\mathbf{x}}(t))$

Convergence in Deterministic Settings³

If the step-size condition holds, the local objective function conditions hold, and $\{W(t)\}$ is deterministic and satisfies the *B*-connectivity condition, then

$$\lim_{t \to \infty} x_i(t) = x^* \in X.$$

Convergence in Deterministic Settings³

If the step-size condition holds, the local objective function conditions hold, and $\{W(t)\}$ is deterministic and satisfies the *B*-connectivity condition, then

$$\lim_{t \to \infty} x_i(t) = x^* \in X.$$

• Challenges: Link failure? $(w_{ij}(t) \rightarrow b_{ij}(t)w_{ij}(t))$ for a random binary matrix B(t) and $i \neq j$

Convergence in Deterministic Settings³

If the step-size condition holds, the local objective function conditions hold, and $\{W(t)\}$ is deterministic and satisfies the *B*-connectivity condition, then

$$\lim_{t \to \infty} x_i(t) = x^* \in X.$$

• Challenges: Link failure? $(w_{ij}(t) \rightarrow b_{ij}(t)w_{ij}(t)$ for a random binary matrix B(t) and $i \neq j$) Doubly stochastic?

Convergence in Random Settings⁴

If the step-size condition holds, the local objective function conditions hold, and $\{W(t)\}$ is deterministic an independent random sequence that is doubly stochastic **almost surely**, and $\{\mathbb{E}[W(t)]\}$ is *B*-connected, then

$$\lim_{t \to \infty} x_i(t) = x^* \in X.$$

⁴I. Lobel and A. Ozdaglar. "Distributed subgradient methods for convex optimization over random network," IEEE Transactions on Automatic Control, 2010.

Convergence in Random Settings⁴

If the step-size condition holds, the local objective function conditions hold, and $\{W(t)\}$ is deterministic an independent random sequence that is doubly stochastic **almost surely**, and $\{\mathbb{E}[W(t)]\}$ is *B*-connected, then

$$\lim_{t \to \infty} x_i(t) = x^* \in X.$$

• Challenges: Link failure?

⁴I. Lobel and A. Ozdaglar. "Distributed subgradient methods for convex optimization over random network," IEEE Transactions on Automatic Control, 2010.

Convergence in Random Settings⁴

If the step-size condition holds, the local objective function conditions hold, and $\{W(t)\}$ is deterministic an independent random sequence that is doubly stochastic **almost surely**, and $\{\mathbb{E}[W(t)]\}$ is *B*-connected, then

$$\lim_{t \to \infty} x_i(t) = x^* \in X.$$

• Challenges: Link failure? Doubly stochastic?

⁴I. Lobel and A. Ozdaglar. "Distributed subgradient methods for convex optimization over random network," IEEE Transactions on Automatic Control, 2010.

Convergence in Random Settings⁵

If the step-size condition holds, the local objective function conditions hold, and $\{W(t)\}$ is deterministic independently and identically distributed random sequence, doubly stochastic **almost surely** row-stochastic almost surely, column-stochastic in-expectation, and *B*-connected in-expectation $\mathbb{E}[W(0)]$ is strongly connected, then

$$\lim_{t \to \infty} x_i(t) = x^* \in X := \arg \min_{x \in \mathbb{R}^m} F(x).$$

⁵K. Srivastava, A. Nedić. "Distributed asynchronous constrained stochastic optimization." IEEE Journal of Selected Topics in Signal Processing 5.4 (2011): 772-790. G. Morral, P. Bianchi, and G. Fort. "Success and failure of adaptation-diffusion algorithms with decaying step size in multiagent networks." IEEE Transactions on Signal Processing 65.11 (2017): 2798-2813.I.

Convergence in Random Settings⁵

If the step-size condition holds, the local objective function conditions hold, and $\{W(t)\}$ is deterministic independently and identically distributed random sequence, doubly stochastic **almost surely** row-stochastic almost surely, column-stochastic in-expectation, and *B*-connected in-expectation $\mathbb{E}[W(0)]$ is strongly connected, then

$$\lim_{t \to \infty} x_i(t) = x^* \in X := \arg \min_{x \in \mathbb{R}^m} F(x).$$

• Challenges: Link failure? Doubly stochastic?

⁵K. Srivastava, A. Nedić. "Distributed asynchronous constrained stochastic optimization." IEEE Journal of Selected Topics in Signal Processing 5.4 (2011): 772-790. G. Morral, P. Bianchi, and G. Fort. "Success and failure of adaptation-diffusion algorithms with decaying step size in multiagent networks." IEEE Transactions on Signal Processing 65.11 (2017): 2798-2813.I.

Our Result

Convergence in Random Settings⁶

If the step-size condition holds, the local objective function conditions hold, and $\{W(t)\}$ is

- a dependent random sequence,
- **②** row-stochastic and further $\mathbb{E}[W(t) | \mathcal{F}(t-1)]$ is column-stochastic almost surely, and

2 B-connected in conditional expectation, i.e., the random graph $([n], \mathcal{E}(tB))$ with

$$\mathcal{E}(tB) := \bigcup_{\tau=tB+1}^{(t+1)B} \mathcal{E}^{\gamma}(\mathbb{E}[W(\tau)|\mathcal{F}(tB)])$$

is strongly connected almost surely for all $t \ge 0$,

then $\lim_{t\to\infty} x_i(t) = x^*$ almost surely for a random vector supported on X.

 $^{^{6}\}mathrm{A.}$ Aghajan and B. Touri. "Distributed optimization over dependent random networks." available on Arxiv.

Our Result

Convergence in Random Settings⁶

If the step-size condition holds, the local objective function conditions hold, and $\{W(t)\}$ is

- a dependent random sequence,
- **②** row-stochastic and further $\mathbb{E}[W(t) | \mathcal{F}(t-1)]$ is column-stochastic almost surely, and

2 B-connected in conditional expectation, i.e., the random graph $([n], \mathcal{E}(tB))$ with

$$\mathcal{E}(tB) := \bigcup_{\tau=tB+1}^{(t+1)B} \mathcal{E}^{\gamma}(\mathbb{E}[W(\tau)|\mathcal{F}(tB)])$$

is strongly connected almost surely for all $t \ge 0$,

then $\lim_{t\to\infty} x_i(t) = x^*$ almost surely for a random vector supported on X.

 $^{^{6}\}mathrm{A.}$ Aghajan and B. Touri. "Distributed optimization over dependent random networks." available on Arxiv.

Convergence in Independent Settings⁷

If the step-size condition holds, the local objective function conditions hold, and $\{W(t)\}$ is an independent random sequence, row-stochastic almost surely and $\mathbb{E}[W(t)]$ is doubly-stochastic, and $\{\mathbb{E}[W(t)]\}$ is *B*-connected, then $\lim_{t\to\infty} x_i(t) = x^*$ almost surely for a random vector supported on X.

⁷A. Aghajan and B. Touri. "Distributed optimization over independent random networks." **somewhere on Overleaf**.

Convergence in Independent Settings⁷

If the step-size condition holds, the local objective function conditions hold, and $\{W(t)\}$ is an independent random sequence, row-stochastic almost surely and $\mathbb{E}[W(t)]$ is doubly-stochastic, and $\{\mathbb{E}[W(t)]\}$ is *B*-connected, then $\lim_{t\to\infty} x_i(t) = x^*$ almost surely for a random vector supported on X.

• This implies the previously discussed results.

⁷A. Aghajan and B. Touri. "Distributed optimization over independent random networks." **somewhere on Overleaf**.

Convergence in Independent Settings⁷

If the step-size condition holds, the local objective function conditions hold, and $\{W(t)\}$ is an independent random sequence, row-stochastic almost surely and $\mathbb{E}[W(t)]$ is doubly-stochastic, and $\{\mathbb{E}[W(t)]\}$ is *B*-connected, then $\lim_{t\to\infty} x_i(t) = x^*$ almost surely for a random vector supported on *X*.

- This implies the previously discussed results.
- Robustness of averaging-based solvers to link-failure.

⁷A. Aghajan and B. Touri. "Distributed optimization over independent random networks." **somewhere on Overleaf**.

• Let ${\mathcal G}$ be an undirected connected graph.

- Let ${\mathcal G}$ be an undirected connected graph.
- Consider a token at the possession of agent $\ell(t)$ at time $t \ge 0$.

- Let ${\mathcal G}$ be an undirected connected graph.
- Consider a token at the possession of agent $\ell(t)$ at time $t \ge 0$.
- $\ell(t)$ asks or shares information (each w.p. 0.5) with a random neighbor s(t).

- \bullet Let ${\mathcal G}$ be an undirected connected graph.
- Consider a token at the possession of agent $\ell(t)$ at time $t \ge 0$.
- $\ell(t)$ asks or shares information (each w.p. 0.5) with a random neighbor s(t).
- If asking, $\ell(t)$ keeps the token $(\ell(t+1) = \ell(t))$ and if sharing, $\ell(t)$ passes the token to s(t) $(\ell(t+1) = s(t))$.

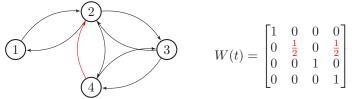
- \bullet Let ${\mathcal G}$ be an undirected connected graph.
- Consider a token at the possession of agent $\ell(t)$ at time $t \ge 0$.
- $\ell(t)$ asks or shares information (each w.p. 0.5) with a random neighbor s(t).
- If asking, $\ell(t)$ keeps the token $(\ell(t+1) = \ell(t))$ and if sharing, $\ell(t)$ passes the token to s(t) $(\ell(t+1) = s(t))$.
- The agent with the token sets

$$\mathbf{x}_{\ell(t+1)}(t+1) = \frac{1}{2}(\mathbf{x}_{s(t)}(t) + \mathbf{x}_{\ell(t)}(t)) - \alpha(t)\nabla f_{\ell(t+1)}(\mathbf{x}_{\ell(t+1)}(t)).$$

- \bullet Let ${\mathcal G}$ be an undirected connected graph.
- Consider a token at the possession of agent $\ell(t)$ at time $t \ge 0$.
- $\ell(t)$ asks or shares information (each w.p. 0.5) with a random neighbor s(t).
- If asking, $\ell(t)$ keeps the token $(\ell(t+1) = \ell(t))$ and if sharing, $\ell(t)$ passes the token to s(t) $(\ell(t+1) = s(t))$.
- The agent with the token sets

$$\mathbf{x}_{\ell(t+1)}(t+1) = \frac{1}{2}(\mathbf{x}_{s(t)}(t) + \mathbf{x}_{\ell(t)}(t)) - \alpha(t)\nabla f_{\ell(t+1)}(\mathbf{x}_{\ell(t+1)}(t)).$$

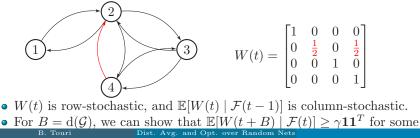
• The rest do simple gradient update $\mathbf{x}_i(t+1) = \mathbf{x}_i(t) - \alpha(t)\nabla f_i(\mathbf{x}_i(t))$.



- \bullet Let ${\mathcal G}$ be an undirected connected graph.
- Consider a token at the possession of agent $\ell(t)$ at time $t \ge 0$.
- $\ell(t)$ asks or shares information (each w.p. 0.5) with a random neighbor s(t).
- If asking, $\ell(t)$ keeps the token $(\ell(t+1) = \ell(t))$ and if sharing, $\ell(t)$ passes the token to s(t) $(\ell(t+1) = s(t))$.
- The agent with the token sets

$$\mathbf{x}_{\ell(t+1)}(t+1) = \frac{1}{2}(\mathbf{x}_{s(t)}(t) + \mathbf{x}_{\ell(t)}(t)) - \alpha(t)\nabla f_{\ell(t+1)}(\mathbf{x}_{\ell(t+1)}(t)).$$

• The rest do simple gradient update $\mathbf{x}_i(t+1) = \mathbf{x}_i(t) - \alpha(t)\nabla f_i(\mathbf{x}_i(t))$.



Our Result: Sketch of the Proof

Convergence in Random Settings

If the step-size condition holds, the local objective function conditions hold, and $\{W(t)\}$ is

- a dependent random sequence,
- **2** row-stochastic almost surely and $\mathbb{E}[W(t) \mid \mathcal{F}(t-1)]$ is doubly-stochastic almost surely, and

3 B-connected in conditional expectation, i.e., the random graph $([n], \mathcal{E}(tB))$ with

$$\mathcal{E}(tB) := \bigcup_{\tau=tB+1}^{(t+1)B} \mathcal{E}^{\gamma}(\mathbb{E}[W(\tau)|\mathcal{F}(tB)])$$

is strongly connected almost surely for all $t \ge 0$. Then $\lim_{t\to\infty} \mathbf{x}_i(t) = x^*$ almost surely for a random vector supported on X.

• Show that $\lim_{t\to\infty} \|\bar{\mathbf{x}}(t) - x^*\| = 0$ a.s. for a random $x^* \in X$

- Show that $\lim_{t\to\infty} \|\bar{\mathbf{x}}(t) x^*\| = 0$ a.s. for a random $x^* \in X$
- Show that $\lim_{t\to\infty} \|\mathbf{x}_i(t) x^*\| = 0$ a.s. for all $i \in [n]$

- Show that $\lim_{t\to\infty} \|\bar{\mathbf{x}}(t) x^*\| = 0$ a.s. for a random $x^* \in X$
- Show that $\lim_{t\to\infty} \|\mathbf{x}_i(t) x^*\| = 0$ a.s. for all $i \in [n]$ through the study of

 $\mathbf{x}(t+1) = W(t+1)\mathbf{x}(t) - \alpha(t)\nabla f(\mathbf{x}(t))$

- Show that $\lim_{t\to\infty} \|\bar{\mathbf{x}}(t) x^*\| = 0$ a.s. for a random $x^* \in X$
- Show that $\lim_{t\to\infty} \|\mathbf{x}_i(t) x^*\| = 0$ a.s. for all $i \in [n]$ through the study of

 $\mathbf{x}(t+1) = W(t+1)\mathbf{x}(t) - \alpha(t)\nabla f(\mathbf{x}(t))$

$$\mathbf{x}(t+1) = W(t+1)\mathbf{x}(t) + \mathbf{u}(t),$$

where $||u(t)|| \leq \alpha(t)L$.

- Show that $\lim_{t\to\infty} \|\bar{\mathbf{x}}(t) x^*\| = 0$ a.s. for a random $x^* \in X$
- Show that $\lim_{t\to\infty} \|\mathbf{x}_i(t) x^*\| = 0$ a.s. for all $i \in [n]$ through the study of

$$\mathbf{x}(t+1) = W(t+1)\mathbf{x}(t) - \alpha(t)\nabla f(\mathbf{x}(t))$$

$$\mathbf{x}(t+1) = W(t+1)\mathbf{x}(t) + \boldsymbol{u(t)},$$

where $||u(t)|| \leq \alpha(t)L$.

• Requires showing $\lim_{t\to\infty} d(\mathbf{x}(t)) = 0$ almost surely for the controlled process.

Lemma

Suppose that $\{D(t)\}$ is a non-negative random (scalar) process such that

$$D(t+1) \le a(t+1)D(t) + b(t), \quad almost \ surely$$

where $\{b(t)\}\$ is a deterministic sequence and $\{a(t)\}\$ is an adapted process (to $\{\mathcal{F}(t)\}\)$, such that $a(t) \in [0, 1]$ and

 $\mathbb{E}[a(t+1) \mid \mathcal{F}(t)] \le \tilde{\lambda} < 1,$

almost surely for all $t \geq 0$. Then, if

 $0 \le b(t) \le K t^{-\beta}$

for some $K, \tilde{\beta} > 0$, we have $\lim_{t \to \infty} D(t)t^{\beta} = 0$, almost surely, for all $\beta < \tilde{\beta}$.

• Extension to non-convex

- Extension to non-convex
- Extension to the social-learning

- Extension to non-convex
- Extension to the social-learning
- Questions?