Scientific Projects: Heart Simulation

Gundolf Haase

Institute for Mathematics and Scientific Computing BioTechMed Graz and NAWI Graz University of Graz, Austria

Isfahan, Feb 3, 2019

Graz/Styria: some numbers

- Austria/Styria: 8.7 Mill. / 1.2 Mill. inhabitants
- Graz: 282.000 (+325.000) part. including 50.000 students
- old city beautiful city center
- south of the alps north of the balkan

Graz/Styria: universities

- Karl-Franzens Universität (35)
- University of Technology (14)

- Medical University (5)
- Montan University at Leoben (5)

Members of the SCIENTIFIC COMPUTING Group

Head Univ.-Prof. Dipl.-Ing. Dr. Gundolf Haase

stDoc Mag.Dr. Manfred Liebmann(2016-, 2009-2015; PhD 2006-2009)

PhD Dipl.-Ing. Stefan Rosenberger (FWF: 2014-2018)

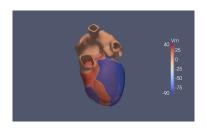
PhD MA Jana Fuchsberger (BTM 2017-2020)

PhD MA Daniel Ganelleri: MA Alban Lumi

laster Johanna Mayr (+ 3 in companies)

Supervising 2 Ph.D. at companies + one at CERN

Cardiovascular Simulations

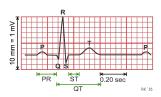

Bidomain equations:

$$-\nabla \cdot (\sigma_i + \sigma_e) \nabla u_e - \nabla \cdot \sigma_i \nabla v = I_e(t)$$

$$\nabla \cdot \sigma_i \nabla v + \nabla \cdot \sigma_i \nabla u_e = C_m \frac{\partial v}{\partial t} + I_{ion}(v, \mathbf{w})$$

$$\frac{\partial \mathbf{w}}{\partial t} = g(v, \mathbf{w})$$

- v: transmembran potential
- l_e: extracellular charge
- + nonlinear elasticity + CFD

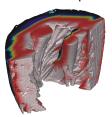

Patient specific simulations

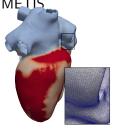
Tissue properties
$$\sigma_i$$
, σ_e in $-\nabla \cdot (\sigma_i + \sigma_e)\nabla u_e - \nabla \cdot \sigma_i \nabla v = I_e(t)$:

- a priori known values have a huge uncertainty
- in vivo measurements for σ_i , σ_e not possible with human
- tensor directions known from physiological maps

Compare calculated ECG with individually measured ECG:

- Idea: Change $\sigma \to \sigma_{\text{patient}}$ s.t. $\mathsf{ECG}_{\textit{calc}} \to \mathsf{ECG}_{\textit{meas}}$
- By Means of Eikonal solver (excitation pattern)
 - Math. optimization
 - Deep learning





Rabbit Heart: Discretization

- Mesh generation by spider/tarantula [F. Kickinger]
- Finite element mesh with tetrahedral and hexahedral elements

Mesh decomposition by METIS

Solve linear system of equations (That is our part!)

$$Ku = f$$

in each outer (time/non-linear) iteration.

• System matrix K is sparse but unstructured.